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Revised structure of zamamistatin
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Abstract—The structure of zamamistatin, a novel bromotyrosine derivative from the Okinawan sponge Pseudoceratina sp. was
revised by comparison of the 13C NMR data of zamamistatin with those of synthetic model compounds.
� 2005 Elsevier Ltd. All rights reserved.
Zamamistatin, isolated from Okinawan sponge Pseudo-
ceratina purpurea by Uemura and co-workers,1 exhibits
significant antibacterial activity against the marine bac-
teria Rhodospirillum salecigens SCRC 113 strain. The
structure was elucidated as shown in 1, an exo-type
dimer of the azaoxa-spiro[6.5] unit consisting of a cyclo-
hexadienyl moiety and an isoxazolidine ring. In our
continuing search for new substances from marine
organisms, we investigated the constituents of the
marine sponge Pseudoceratina sp. collected at Okuma,
Okinawa, Japan, and isolated zamamistatin (Fig. 1).
The spectral analysis of zamamistatin let us reconsider
its structure. We report here the revised structure of
0040-4039/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Figure 1.
zamamistatin, 2, by comparing the 13C NMR data for
zamamistatin with those of synthetic model compounds.

The marine sponge Pseudoceratina sp. (115 g), collected
at Okuma, Okinawa, Japan, in August 2005, was
extracted with MeOH (300 mL) for 7 days. The extract
was filtered, concentrated, and partitioned between
EtOAc and H2O. The EtOAc-soluble material was
further partitioned between 90% aqueous MeOH and
hexane. The material obtained from the aqueous MeOH
portion was subjected to fractionation with column
chromatography (ODS silica gel, MeOH–H2O) and
reversed-phase HPLC (Develosil ODS-HG-5, MeOH–
H2O) to give zamamistatin as a colorless oil (35.0 mg).

The 1H and 13C NMR data of isolated zamamistatin in
CDCl3 are identical with the reported data.1 Table 1
Table 1. NMR data for zamamistatin in CD3OD and acetone-d6
a

Position 1H 13C

500 MHz
CD3OD

270 MHz
acetone-d6

125 MHz
CD3OD

67.8 MHz
acetone-d6

1 4.10 d (1.1) 4.23 d (7.3) 78.8 78.6
2 114.2 113.8
3 148.9 148.2
4 121.5 120.7
5 6.33 d (1.1) 6.41 d (1.1) 133.5 133.6
6 74.5 74.3
7a 2.78 d (16.7) 2.91 br s 27.0 26.7
7b 2.83 d (16.7)
8 118.4 117.8
9 3.70 s 3.70 s 60.2 60.0
–OH 5.33 d (7.3)
–NH 5.33 br s

a Coupling constants (Hz) are given in parentheses.
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Figure 2. Selected NMR data of aerothionin (3) in acetone-d6.
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summarizes the NMR data in different solvents. The
chemical shifts in acetone-d6 of C1–C5 and C9 in zama-
mistatin closely resembled those of aerothionin
(Fig. 2).2c However, the chemical shifts of C6 (dC6
74.3) and C7 (dC7 26.7; dH7 2.91) in zamamistatin were
apparently different from those of aerothionin (dC6
91.5, dC7 40.2; dH7 3.15, 3.85) (Fig. 2). Therefore, zama-
mistatin was thought to have a different ring system
from an isoxazolidine ring. Considering the molecular
formula of zamamistatin, we proposed structure 2, pos-
sessing a dihydro-1,2-oxazine ring for zamamistatin.

To confirm the proposed structure, we planned to com-
pare the 13C NMR data of zamamistatin with those of
dihydro-1,2-oxazine methyl ester 10a and isoxazoline
methyl ester 11a.3 Although NMR data of isoxazoline
methyl ester 11a were reported by Hoshino,3c dihydro-
1,2-oxazine methyl ester 10a has not been prepared.
We therefore synthesized dihydro-1,2-oxazine methyl
ester 10a.

Our synthetic plan was based on reported procedures3

(Scheme 1). The Wittig-type reaction of 4 and subse-
quent hydrolysis gave aldehyde 5 in a good yield. Alde-
hyde 5 was subjected to Horner–Wadsworth–Emmons
olefination with phosphonate 64 to give silyl enol ether
7. Treatment of silyl enol ether 7 with HFÆpyr in MeOH,
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Scheme 1. Reagents and conditions: (a) (i) (methoxymethyl)triphenylphosph
two steps; (b) 6, LHMDS, THF, �78 �C, 98%; (c) (i) HFÆpyr., MeOH, rt, th
steps; (d) 2,4,4,6-tetrabromo-2,5-cyclohexadienone, MeCN, rt, 92%; (e) Zn(B
followed immediately by the addition of NH2OHÆHCl,
yielded an oxime, the hydrogenolysis of which gave
oxime ester 8. In the oxidative cyclization of 8, we used
2,4,4,6-tetrabromo-2,5-cyclohexadienone in aceto-
nitrile.5 This reaction took place readily to yield 9 in a
92% yield. According to Yamamura�s method,6 reduc-
tion of 9 with Zn(BH4)2

7 gave trans dihydro-1,2-oxazine
methyl ester 10a. On the other hand, 9 was reduced with
NaBH4

5a to give cis dihydro-1,2-oxazine methyl ester
10b.8

Stereochemistry of 10a and 10b was determined by com-
parison of the 1H NMR spectra of 10a (dH1 4.13, dOH

5.30) and 10b (dH1 4.36, dOH 4.89) in acetone-d6 with
those of related compounds;6 the 1H chemical shifts of
the trans isoxazoline methyl ester 11a, which has a trans
vicinal relationship between a hydroxy group and an
oxime oxygen atom, were dH1 4.22 and dOH 5.38, while
those of cis isoxazoline methyl ester 11b were dH1 4.53
and dOH 4.98 (Fig. 3).6 Thus, the stereochemistry of
compounds 10a and 10b was found to be trans and
cis, respectively.

The 13C NMR data in acetone-d6 of the synthetic 10a
and 10b were similar to those of zamamistatin rather
than aerothionin-related compounds.9 In the synthetic
compound 10a, carbon signal due to C6 appeared at
dC 79.9, while the carbon signal in zamamistatin
appeared at dC 74.3. On the other hand, the carbon
signal due to C6 for 11a appeared at dC 92.4
(Fig. 4).3c These observations indicated that zamamist-
atin has a dihydro-1,2-oxazine ring rather than an isox-
azolidine ring. Based on these results, it was concluded
that the structure of natural zamamistatin, previously
proposed as 1, should be revised to structure 2.

This novel structure of zamamistatin, an endo-type
dimer of the azaoxa-spiro[6.6] unit, can be explained
by a plausible biogenetic pathway shown in Figure 5.
Reductive dimerization of the isoxazoline derivative
12,10 followed by oxidative decarboxylation, yielded an
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Figure 5. Plausible biogenetic pathway for zamamistatin.
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exo-type dimer of azaoxa-spiro[6.5] unit 1. Hydrolysis
and recyclization of 1 gave the endo-type dimer of aza-
oxa-spiro[6.6] unit 2. This isomerization from 1 to 2
was supported by computational calculation, in which
structure 2 is more stable than structure 1 (52.7 kcal/
mol for 1, 49.1 kcal/mol for 2: MacroModel 6.0,
AMBER*).
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